
 1

An Analysis into Software Piracy Prevention

Peter A. Ciszak, Jack Lai, Nathan Tai
EECE 412 – Computer Security – Group 2

University of British Columbia

Abstract – The issue of software piracy has existed for
several decades. Full-time developers dedicate their lives
towards creating software in order to make a living. Many
insist that software is a form of intellectual property and
that the quality of certain products could not continue to
be produced if the developers were not adequately
compensated. Regardless of the social factors it’s clear that
there is a financial motivation involved when developers
employ copy-protection schemes. This report analyzes
many of the faults with traditional methods and explores
the capabilities of online authentication and its power
when paired with software diversity. Although no copy-
protection technique is completely bullet proof, there is
still significant room for practical improvement.

I. INTRODUCTION

 HERE was little need for copy protection in the early days
of computing. At the time, most software was custom-

developed for in-house applications. It wasn’t until the early
1960s that computer applications were being actively
marketed. According to the Copyright Office, the first deposit
of a computer program for registration was on November
30th, 1961. As computers have become more and more
popular, many have invested their lives in the advancement of
their capabilities. As a result, there is a significant financial
motivation behind software development while more and more
development houses begin to enforce license agreements and
apply technical protection schemes to deter unauthorized
copying. A software license agreement is an attempt at a
contract between a producer and a user of computer software,
which typically grants the user the right to only execute the
software.

II. PREVIOUS EFFORTS

There was a project was written in the previous cohort
regarding software cracking. It primarily focused on common
techniques to exploit statically secured applications. This
static nature means that the entire process can be executed any
number of times with different testing criteria with no
previous consequence. For instance everything could be
simulated in a refreshable virtual machine.

The focus of this report is specifically about how online

authentication techniques could be used to secure software to a

much greater extent then simple static protection schemes.

III. CONSIDER THE PROBLEM

It’s a common consensus in computer security that an
attacker will have complete control over the machines which
they have physical access. This is because with static local
software, the whole world, as it is relevant, exists entirely
inside the computer on the attackers desk. Naturally it follows
from this that any authentication mechanisms would
essentially exist entirely within the attackers computer. This is
a major disadvantage.

The typical toolkit of a software cracker would certainly

include a binary disassembler. A disassembler would convert
the machine code of the application binary back into assembly
language. Although, this is seldom a perfect process; often
code and data are difficult to distinguish and may generate
large blocks of garbage code. Nevertheless, with this, an
attacker can attempt to isolate particular important algorithms
in order to gain an understanding in how to exploit the
software. An attacker will often also use a debugger to step
through the resulting assembly to see exactly where the
program is as it executes in real time. Once the attacker has
pinpointed what they believe to be an integral part of the
protection algorithm, they can make an educated modification
using a hex editor. If anything goes wrong, they can repeat the
process by running everything inside a virtual machine and
simply revert states. This is the major problem with static
defenses.

Although it may sound difficult to perform such tasks, we

were actually able to do it ourselves with a lightweight word
processor for Mac OSX called WriteRoom. WriteRoom used
no online authentication scheme and in addition to this, it
employed a third party protection mechanism to attempt to
secure itself. Ironically we were able to exploit WriteRoom by
completely bypassing its 3rd party mechanism with a simple
tweak inside a hex-editor.

It appears that the developers used string constants to

specify application wide configuration settings within the
code. These strings also turned out to manage the registration
of the software. We simply changed the strings according to
what they described. As can be seen in the figure below, the
runShowTrialAlert strings as well as the trialDaysRemaining
constants are exposed in plaintext.

T

 2

In general one of the great design problems with copy-

protection is that developers commonly program what is
referred to as a SPOT or single point of truth into their
designs. In essence it is a single bit that software looks at to
determine if it should run or not. While in terms of software
engineering many developers consider the SPOT rule to be
good design, in terms of piracy security this single point of
truth makes it all too simple for an attacker to isolate and flip
the appropriate bit.

Some programs employ obfuscation techniques inside the

application binary designed to make the attackers job more
time consuming. Nevertheless the bottom line is that
developers will always have the more difficult job since an
attacker always has complete control over the code running on
their own machine.

In spite of what appears to be a futile exercise, what exactly

could a developer do to secure their software? One option is to
run the application completely remotely, which would
naturally imply the deployment of web applications. This is
what a lot of developers are actually doing. However this style
of deployment is obviously not suitable for every form of
application. In addition web applications create an extra set of
security vulnerabilities that need to be considered when
designing for the Internet.

An alternative is to consider running only part of the

application remotely. Today more and more software is using
what is called online authentication or online product
activation. The idea is that a developer should keep the
authentication logic in the client application simple and keep
the real protection logic far away from the attackers. This is an
example of applying an economy of mechanism.

One of the great advantages with online product activation

is the fact that the attacker does not have access to the remote
authentication servers. This means that a developer does not
have to worry about obfuscating the authentication logic.

IV. ONLINE AUTHENTICATION

Online authentication allows developers to move the
authentication mechanism to a remote computer. Immediately
it is clear that this will create particular usability tradeoffs. A
developer does not want to lock legitimate paying customers
out of their software during either a failing of their service or
the inability for the customer to connect to the Internet.

A typical online authentication routine usually involves the

following steps. The software will demand the serial number
from the user. After the user enters the number, the
information is sent to the activation servers for remote
processing. Some common information in addition to the
serial number includes a checksum of the application binary as
well as a hash of unique machine signatures. This allows the
activation severs to generate a machine dependent activation
code and ensure that the binary has not bee modified. The
activation code it then returned to the client. The software now
has to verify the correctness of this activation code. It’s
important that the developer still ensure not to use a single
point of truth on the client side. Like all copy-protection
mechanisms, a single weakness could defeat the entire system
regardless of how much protection was behind that SPOT.
This is why it’s very important to practice using defense in
depth when designing a copy-protection scheme.

V. DREAMWEAVER CASE STUDY

We investigated Adobe Dreamweaver CS4 to determine
how copy-secure the latest and greatest software from Adobe
actually was. Before going further its important to understand
Adobe’s interesting distribution model. Adobe allows their
customers to download full complete versions of all their
products from their website with no restrictions aside from a
thirty day trial limit. After the limit has expired, the user is
required to activate. This was one of the reasons we decided to
go with Dreamweaver since it’s a popular and well known
software package and its latest version CS4, just came out of
beta about a month before this writing.

 3

To initially test what Dreamweaver’s behavior would be,

we downloaded and installed a clean copy. When we launched
the app, just as expected, it told us that it was time limited
until we purchased a license and activated with Adobe. Instead
of purchasing a license, we decided to find an existing serial
by searching on Google. A Dreamweaver serial was very easy
to find, as there were many results. In fact the serial number
we chose was actually the beta serial number, which was
publicly available. We entered the serial into Dreamweaver
and sure enough there were problems.

Before going any further, it is always a good idea in

computer security and as well when attempting to exploit
software to learn as much as you can before attempting too
much. We went to Adobe’s website and found an interesting
article regarding troubleshooting during the activation process.
As quoted directly from the site:

“Product activation is a technical measure that helps

protect Adobe against unauthorized use and copying of its
software. Activation runs silently in the background and
occurs when the application detects an Internet
connection.”

This short paragraph actually gives an attacker a great deal

of information. The first important point is that it happens in
the background when the application detects an Internet
connection. We tried a simple firewall to block the whole
Dreamweaver process and this was not sufficient to change
anything. Dreamweaver still wanted us to activate when we
had a connection. To analyze the matter further we fired up
Wireshark, a popular packet analyzer, and determined that
Dreamweaver was in fact attempting to send packets to
activate.adobe.com. The interesting thing in this study is that
instead of cracking Dreamweaver by modifying it’s binary, we
wanted to alter it’s environment to trick it into thinking it’s
servers were offline although it was aware that it was
connected to the Internet.

In order to do this, we tweaked the hosts file which is
usually found on UNIX based systems inside the /etc
directory. What this file does is map static name resolutions to
IP addresses before going to a DNS server, so in our case we
wanted to map activate.adobe.com to something else such as
localhost. As we can see below, a ping test shows us that when
the system requests activate.adobe.com, we are certainly not
resolving the address that Adobe intended.

What we have done is created a unique third case where the

Dreamweaver process is still connected to the Internet except
that when it tries to resolve an address for activate.adobe.com
it gets our dummy address instead. This gives the appearance
that there may be something wrong with Adobe’s servers.
Upon re-launching Dreamweaver it does not ask for anything
anymore. Adobe has made a particular tradeoff to act non-
intrusively when its activation servers are possibly offline.
This behavior also could have been a consequence of the fact
that Dreamweaver just came out of beta. It is necessary that
the attacker perform the modifications to the hosts file before
the initial launch of Dreamweaver. If this is not the case,
Dreamweaver will store the invalid serial deep inside the
attackers system and will not run either way.

Interestingly, this particular exploit does not work on the

 4

latest version of Dreamweaver; it’s possible that it only
existed initially to smooth the product launch in the event of
activation problems. Nevertheless it’s clear that online
authentication alone is not enough. A single point of truth on
the client side can still be flipped in order to make the
software continue to execute.

What we need is that client requires a service that can only

be provided remotely. This brings us to the exciting topic of
software diversity.

VI. SOFTWARE DIVERSITY

The concept of software diversity may be new to copy-
protection, however it has been applied in networking
applications with some success. Server diversity helps to
reduce the number of shared vulnerabilities between different
servers. Shared vulnerabilities can result in a large number of
attacks that can affect an entire installation base. Software
diversity is an approach to mitigate the risk of correlate failure
and lower the resulting consequence of a single attack and it’s
effectiveness of repeated application. Many researchers have
been focusing on introducing diversity by using varying kinds
of techniques on a system-by-system basis. Therefore,
diversity must be introduced at all levels of system design,
including any scheme that is used to introduce the diversity
itself.

There does not yet exist a good example of a product that

has successfully deployed a practical diversity technique. Yet
there are may methods that could significantly increase the
amount of time an attacker must spend. A particularly
interesting combination is using online authentication with
software diversity to link a remotely obfuscated module after
installation. The module would be obfuscated using hash of
the unique hardware signatures of the client machine. Vendors
could deploy their software without particular libraries
preventing the software from functionally being able to run no
matter what an attacker does. This would require that the
product call home to get these libraries which could be
diversified case by case. In addition the libraries could employ
a form of software ageing which could force periodic
activation. This helps us because a single hack will no longer
work universally. What we have now is a dynamic nature
defense and no longer a static defense.

VII. OTHER TECHNIQUES

a. Dynamic Nature of Defense

Another common routine for implementing a dynamic

nature of defense often involves five phases: the purchasing
phase, the downloading phase, the installation phase, and
the execution and update phases. At first, a user has to
purchase the product key and unique installer through the

server. The server will authorize the user to download the
unique installer with a key accompanied. Then the user will
install the software, which includes a uniquely compiled
executable binary, so the crack cannot be generalized. In the
execution phase, the execution path contains an embedded
parity check to once again decrease the likelihood of
successful malicious activities. Finally, an unscheduled
update allows the software to age based on the
fragmentation, accumulation of errors and the exhaustion of
operating system resources.

b. Encryption

Encryption is the most common method used to hide

digital data. So how could it be used to protect software?
The problem is that everything still needs to be decrypted
on the attackers computer before it can be of any use. In
light of this weakness, several practical cases have shown
that using encryption to hide part of the software binary is a
significant deterrent for an attacker. An increase in the
number of encrypted entities will certainly increase an
attackers work. Encrypting all application state data
including the serial numbers, server-destined packets and
parts of the application binary itself will always add to the
time and difficulty of exploiting the software.

c. Code Obfuscation

Code obfuscation is the process of intentionally making

the object, machine or source code difficult to understand.
The purpose is to deter reverse engineering, disassembly or
de-compilation. Therefore, this can prevent unauthorized
access to the source code, so that it is difficult to duplicate
or modify the code to achieve a desired outcome.

d. Legal Measures

Even though the Copyright Act is very common in many

countries, its exploitation is often not enforced on a person
by person basis. It’s not difficult to find illegal copies of
software online for even the technically un-savvy
individual. Software vendors have cumulatively lost
billions of dollars every year because of this. As a result,
many companies have suggested that the government
increase the level of discipline so that they can more
successfully take legal action if necessary. Some believe
that through better enforcement to deter piracy by creating a
fear of consequence could possibly prevent a significant
number of piracy cases. This pessimistic solution is not
universally accepted.

VIII. FINANCIAL CONSIDERATIONS

Developing copy-protection schemes requires an
experienced development team and specialized knowledge.

 5

Not all developers are able to adequately apply such measures.
A developer should consider the additional costs required to
invest in a protection scheme vs. the actual estimated losses
from duplication. For small time developers it’s often not
worth the investment. In addition, deploying a system with
online authentication and diversity requires substantial
sophistication in the server-side software as well as the
resources to keep the cluster running constantly. Nevertheless,
its been shown to be quite a reasonable investment for larger
corporations which would actually see a return on their
investment.

IX. CONCLUSION

When designing any secure system, copy-protection
included we must consider the principles of secure systems.
This means we need defense in depth, not a single point of
truth. We want a least common mechanism, we should use
encrypted channels whenever communicating with servers.
We can apply complete mediation by removing important
libraries from shipped software to prevent it from initially
running without calling home. Applying a good economy of
mechanism implies that we should keep it simple on the client
side and try to put most of the complexities of the scheme if
any on the remote machine where an attacker cannot analyze
them. As well we must consider the psychological
acceptability of the entire solution. This is the compromise
that Adobe had to make when they chose not to block us out
of Dreamweaver when it was unable to contact its activation
servers. Regardless of all these techniques, the harsh reality is
that software diversity and online authentication only make
software exploits slower. It’s easy for a developer to overlook
something and if it’s serious enough it can rip a hole in the
entire mechanism. It’s still very much a game of cat and
mouse and the attackers have the head start. Nevertheless,
there is still a lot that a developer can do that is still not
commonly practiced. This includes many of the techniques
described above and the pairing of online authentication with
software diversity. Applying more then just one single point of
truth significantly increases the deterrence of such attacks.

REFERENCES

[1] Bertrand Anckaert, Bjorn De Shutter and Koen De Bosschere, “Software
Piracy Prevention through Diversity”. [Online]
 Available: http://portal.acm.org/citation.cfm?id=1029146.1029157

[2] Gareth Cronin, “A Taxonomy of Methods for Software Piracy Prevention”
Available: http://www.croninsolutions.com/writing/piracytaxonomy.pdf

[3] Michael Folk, “Software Piracy Prevention”
Available:
http://www.cs.allegheny.edu/~gkapfham/research/RICSS/RICSS_folk.pdf

[4] Autodesk and AutoCAD, “Product Activation”
Available: Activation_Whitepaper_v2.pdf

[5] Software & Information Industry Association, “Anti-Piracy”
Available: http://www.siia.net/piracy/whatis.asp

[6] Ankit Jain, Jason Kuo, Jordan Soet and Brian Tse, “Software Cracking”
Available: http://courses.ece.ubc.ca/412/previous_years/
2007_1_spring/modules/term_project/reports/2007/software_cracking.pdf

[7] Heather Meeker, “Only in America? Copyright Law Key to Global Free
Software Model”
Available: http://www.linuxinsider.com/story/50421.html

[8] Canadian Intellectual Property Office
Available: http://www.cipo.ic.gc.ca/epic/site/cipointernet-
internetopic.nsf/en/wr00090e.html

